A New Intersection Theorem in Topological Spaces with the Application in Game Theory

Kai Ting Wen

College of Civil Engineering and Architecture, Bijie University
Bijie, Guizhou, 551700, P R China
wenkaiting_2004@sina.com.cn

Abstract- In this paper, a new intersection theorem for weakly transfer compactly closed valued mappings is established in topological spaces. As applications, new variational inequalities, a fixed point theorem and a maximal element theorem are obtained in noncompact GFC-spaces. Our results unify, improve and generalize some known results in recent reference. Finally, equilibrium existence theorems for abstract economies and qualitative games in noncompact GFC-spaces are yielded.

Keywords- GFC-space; T-KKM Mapping; Variational Inequality; Fixed Point; Maximal Element; Abstract Economy; Equilibrium

I. INTRODUCTION

The aim of this paper is to establish a new intersection theorem for weakly transfer compactly closed valued mappings in topological spaces. As applications, new variational inequalities, a fixed point theorem and a maximal element theorem are obtained in noncompact GFC-spaces. Our results unify, improve and generalize some recent results in the reference therein. Finally, equilibrium existence theorems for abstract economies and qualitative games in non-compact GFC-spaces are yielded.

II. PRELIMINARIES

Let X be a nonempty set. We denote by \(X \times 2^X \) the family of all nonempty finite subsets of X and the family of all subsets of X, respectively, by \(\triangle_n \) the standard n-dimensional simplex with vertices \(e_0, \ldots, e_n \). Let X and Y be two topological spaces. We denote by \(C(X, Y) \) the class of single-valued continuous maps of X into Y. Following Khanh et al. [5,6], let X be a topological space, Y be a nonempty set and F a family of continuous mappings \(f: X \rightarrow Y \). Then a triple \((X, Y, F) \) is said to be a GFC-space if for each \(N = \{y_0, \ldots, y_n\} \subset Y \), there is \(j_N: X \to D_n \) of the family F. Let \(D \subset Y \) and \(S: Y \to 2^Y \) be given. D is called an S-subset of Y if for each \(N = \{y_0, \ldots, y_n\} \subset Y \) and each nonempty subset \(\{y_{i_1}, \ldots, y_{i_k}\} \subset N \), we have

\[j_N(D) \cap S(D) \]

where \(D_k \) is the face of \(D_n \) corresponding to \(\{y_{i_1}, \ldots, y_{i_k}\} \).

(1)

Let \((X, Y, F) \) be a GFC-space, \(Z \) a topological space, \(F: Y \to 2^Y \) and \(T: X \to 2^Z \) two mappings. F is said to be a T-KKM mapping if for each \(N = \{y_0, \ldots, y_n\} \subset Y \) and each nonempty subset \(\{y_{i_1}, \ldots, y_{i_k}\} \subset N \), we have

\[T(j_N(D)) \cap \bigcup_{i \in Y} F(y_i) \]

A mapping \(T: X \to 2^Z \) is said to have the generalized KKM property if for each T-KKM mapping \(F: Y \to 2^Z \), the family \(\{cl(F(y))\}_{y \in Y} \) has the finite intersection property. By KKM(\(X, Y, Z \)) we denote the class of all mappings \(T: X \to 2^Z \) which enjoy the generalized KKM property.

Now, we introduced the following definitions and lemmas.

Definition 2.1 Let \((X, Y, F) \) be a GFC-space, \(Z \) a topological space, \(T: X \to 2^Z \) a mapping and \(g: 2^Z \to R \) a real number. A function \(f: X \times Y \to R \) \(f \cup \{1\} \) is said to be generalized \(g \)-T-GFC-diagonally quasiconcave (resp., quasiconvex) in \(y \) if for each \(N = \{y_0, \ldots, y_n\} \subset Y \), each nonempty subset \(\{y_{i_1}, \ldots, y_{i_k}\} \subset N \) and each \(z \in \bigcup_{i \in Y} f_j(x_i(z)) \), we have

\[\min_{y_{i_1} \ldots y_{i_k}} f(y_i, z) \leq g(\text{resp.,} \max_{y_{i_1} \ldots y_{i_k}} f(y_i, z)) \geq g. \]

Remark 2.1 Definition 2.1 unifies and generalizes Definition 2.6 of Tang et al. [3], Definition 4.1 of Ding and Wang [4], Definition 1.2 of Wen [7], Definition 3.1 of Ding [8], Definition 2.5(3) and 2.6 of Kirk et al. [9], Definition 2.4 of Ding [10], Definition 2.1 of Wen [11], and the other corresponding definitions.

The following Lemma is obvious.

Lemma 2.1 Let \((X, Y, F) \) be a GFC-space, \(Z \) a topological space, \(T: X \to 2^Z \) a mapping and \(g: 2^Z \to R \) a real number. Then a function \(f: X \times Y \to R \) is generalized \(g \)-T-GFC-diagonally quasiconcave (resp., quasiconvex) in \(y \) if and only if the mapping \(F: Y \to 2^Z \) defined by
\[F(y) := \{ z \mid Z, f(y, z) \in K \} \]
\[(\text{resp., } F(y)) := \{ z \mid Z, f(y, z) \in g \} \]
for each \(y \in Y \) is a \(T \)-KKM mapping.

Remark 2.2 Lemma 2.1 unifies and generalizes Proposition 3.1 of Tang et al.[3], Lemma 4.1 of Ding and Wang[6], Lemma 1.1 of Wen[9], Lemma 3.1 of Ding[8], Lemma 2.7 of Kirk et al.[10] and Lemma 2.1 of Wen[11].

Definition 2.2[11] Let \(X \) be a nonempty set, \(Y \) a topological space and \(K \) a nonempty compact subset of \(Y \). A mapping \(G : X \rightarrow 2^X \) is said to be weakly transfer compactly open (resp., closed) valued relative to \(K \) if for each \(x \in X \), \(\{ y \in Y \mid f(x, y) \in \text{int}(G(y) \cap K)(\text{resp., } y \in Y \mid f(x, y) \in \text{cl}(G(y) \cap K)) \) implies that there exists \(x' \in X \) such that \(y \in \text{int}_Y(G(x') \cap K)(\text{resp., } y \in Y \mid \text{cl}_Y(G(x') \cap K)) \).

Definition 2.3[11] Let \(X \) be a nonempty set, \(Y \) a topological space, \(K \) a nonempty compact subset of \(Y \) and \(g \in R \) a real number. A function \(f : X \times Y \times R \rightarrow R \) is said to be weakly \(g \)-transfer compactly upper (resp., lower) semicontinuous (in short, \(g \)-t.c.u.s.c) relative to \(K \) in \(Y \) if for all \(x \in X \) and \(y \in Y \), \(f(x, y) \geq g \) (resp., \(f(x, y) \leq g \)) implies that there exist a relatively open neighborhood \(N_Y \) of \(y \) in \(K \) and \(x' \in X \) such that \(f(x', y) \geq g \) (resp., \(f(x', y) \leq g \)) for all \(z \in N_Y \).

Lemma 2.2[11] Let \(X \) be a nonempty set, \(Y \) a topological space, \(K \) a nonempty compact subset of \(Y \) and \(g \in R \) a real number. A function \(f : X \times Y \times R \rightarrow R \) is \(g \)-t.c.u.s.c relative to \(K \) if and only if the mapping \(F : X \rightarrow 2^Y \) defined by \(F(x) := \{ y \in Y \mid f(x, y) \in \text{int} G(y) \cap K \} \) (resp., \(F(x) := \{ y \in Y \mid f(x, y) \in \text{cl} G(y) \cap K \}) \) for each \(x \in X \) is weakly transfer compactly closed valued relative to \(K \).

The following lemma is the improving version of Lemma 2.1 of Ding et al.[2], Lemma 2.1 of Khanh et al.[5], Lemma 2.1 of Hai et al.[6] and Lemma 2.1 of Lin et al.[12].

Lemma 2.3 Let \(X \) be a nonempty set, \(Y \) a topological space, \(K \) a nonempty compact subset of \(Y \) and \(F : X \rightarrow 2^Y \) a mapping. Then the following conditions are equivalent:

1. \(F \) is weakly transfer compactly closed (resp., open) valued relative to \(K \);
2. \(\bigcap_{i \in I} (K \cap F(x)) = \bigcap_{i \in I} (K \cap cl F(x)) \) and \(\bigcup_{i \in I} (K \cap int F(x)) \).

Remark 3.1 If \(F \) is transfer compactly closed valued or transfer compactly open valued, then \(F \) is weakly transfer compactly closed values, of course. If \(Y = Z = K \) is one of a compact \(L \)-convex space, compact hyperconvex space or a compact \(G \)-convex space, and \(F \) is KKM mapping, then the conditions that \(F \) is a nonempty compact subset of \(Z \) has the finite intersection property and there exists \(N \in I \) such that \(\bigcap_{i \in I} cl F(z) \) is held trivially. Therefore, Theorem 3.1 improves and generalizes Theorem 2.2(1) of Ding[8], Corollary 2.6 of Kirk et al.[9], Theorem 3.2(i) of Ding[10], Theorem 3.1 of Wen[11], Theorem 2.2 of Wen[13], Theorem 1 of Park[14], and Theorem 1.1 of Chowdhury et al.[15].

Theorem 3.1 Let \(Y \) be a nonempty set, \(Z \) a topological space, \(K \) a nonempty compact subset of \(Z \) and \(F : Y \rightarrow 2^Z \) a mapping with weakly transfer compactly closed values relative to \(K \). Suppose that the family \(\{ cl F(y) \}_{i \in I} \) has the finite intersection property and there exists \(N \in I \) such that \(\bigcap_{i \in I} cl F(z) \) is held trivially. Then \(\bigcap_{i \in I} cl F(z) \) is nonempty compact subset of \(Z \) and \(F \) is KKM mapping, and \(\bigcap_{i \in I} cl F(z) \) is compact. In virtue of Lemma 2.3, we have

\[\bigcap_{i \in I} F(y) = \bigcap_{i \in I} (K \cap \bigcap_{i \in I} F(y)) \]
\[= \bigcap_{i \in I} (K \cap cl F(y)) \]
\[= \bigcap_{i \in I} cl F(y) \]

Therefore,

\[K \cap \bigcap_{i \in I} F(y) = \bigcap_{i \in I} (K \cap cl F(y)) \]
\[= \bigcap_{i \in I} cl F(y) \]

Theorem 3.2 Let \(Y \) be a nonempty set, \(Z \) a topological space, \(K \) a nonempty compact subset of \(Z \) and \(f : Y \times Z \rightarrow R \) a real number, and \(f : Y \times Z \rightarrow R \) a function such that
(1) \(\{c|_{\mathcal{Z}} \mathcal{Z} : f(y,z) \in \mathcal{G}\}_{\pi} \) has the finite intersection property;

(2) \(f(y,z) \) is w.g -t.c.l.s.c. relative to \(K \) in \(z \);

(3) there exists \(N \tilde{\mathcal{I}} \prec_\prec \wedge \) such that

\[
\bigcap_{\mathcal{I} \wedge} \{c|_{\mathcal{Z}} \mathcal{Z} : f(y,z) \in \mathcal{G} \} \subset K .
\]

Then there exists \(z^* \tilde{\mathcal{I}} \) \(K \) such that \(f(y,z^*) \notin \mathcal{G} \) for all \(y \in Y \).

Proof Define a mapping \(F : Y \to 2^Y \) by

\[
F(y) = \{ z \in \mathcal{Z} : f(y,z) \in \mathcal{G} \}, y \in Y .
\]

Then by (1), \(\{c|_{\mathcal{Z}} F(y)\}_{\pi} \) has the finite intersection property. By (2) and Lemma 2.2, \(F \) is weakly transfer compactly closed valued relative to \(K \). By (3), there exists \(N \tilde{\mathcal{I}} \prec_\prec \wedge \) such that \(\bigcap_{\mathcal{I} \wedge} c|_{\mathcal{Z}} F(y) \subset K \). In virtue of Theorem 3.1, we have

\[
K \supseteq \bigcap_{\mathcal{I} \wedge} F(y) .
\]

Take \(z^* \tilde{\mathcal{I}} \bigcap_{\mathcal{I} \wedge} F(y) \). Then \(z^* \tilde{\mathcal{I}} K \) and \(f(y,z^*) \notin \mathcal{G} \) for all \(y \in Y \).

Remark 3.2 As shown in Remark 3.1, Theorem 3.2 unifies, improves and generalizes Theorem 3.2 of Wen[7], Theorem 3.5 of Ding[8], Theorem 2.8 of Kirk et al.[9], Theorem 4.2 of Ding[10], Theorem 2.1 and Theorem 2.2 of Chowdhury et al.[15].

Theorem 3.3 Let \((X,Y,F) \) be a GFC-space, \(Z \) a topological space, \(Y \) a nonempty subset of \(Z \), \(K \) a nonempty compact subset of \(Z \), \(T \tilde{\mathcal{I}} \) \(\mathcal{K} \mathcal{M}(X,Y,Z) \), \(g \tilde{\mathcal{I}} \) \(\mathcal{R} \) a real number and \(f : Y \times \mathcal{Z} \to \mathcal{R} \) a function such that

(1) for each \(z \in \mathcal{Z} \), \(\{ y \in Y : f(y,z) \in \mathcal{G} \} \) is empty or a \(r^{-1} \)-subset of \(\mathcal{Z} \);

(2) for each \(y \in Y \), \(f(y,z) \notin \mathcal{G} \);

(3) \(f(y,z) \) is w.g -t.c.l.s.c. relative to \(K \) in \(z \);

(4) there exists \(N \tilde{\mathcal{I}} \prec_\prec \wedge \) such that

\[
\bigcap_{\mathcal{I} \wedge} c|_{\mathcal{Z}} \mathcal{Z}: f(y,z) \in \mathcal{G} \} \subset K .
\]

Then there exists \(z^* \tilde{\mathcal{I}} K \) such that \(f(y,z^*) \notin \mathcal{G} \) for all \(y \in Y \).

Proof We claim that \(f(y,z) \) is generalized \(g \)-T-GFC-diagonally quasiconcave in \(y \). Otherwise, there exist \(N \tilde{\mathcal{I}} \prec_\prec \wedge \), \(y \in Y \), nonempty subset \(\{ y_0, \ldots, y_n \} \) \(\subset N \) and \(\tilde{\mathcal{I}} \) \(T(y \tilde{\mathcal{I}} N) \) such that \(\min_{y \in Y} f(y,z) \notin \mathcal{G} \) and then,

\[
\{ y_0, \ldots, y_n \} \mathcal{I} \mathcal{Y} \{ y \in Y : f(y,z) \in \mathcal{G} \} .
\]

By (1), we have,

\[
j \tilde{\mathcal{I}} (D) \cap (\{ y \in Y : f(y,z) \in \mathcal{G} \} ,
\]

so that,

\[
\{ y \in Y : f(y,z) \in \mathcal{G} \} .
\]

Hence, \(f(y,z) \notin \mathcal{G} \), which contradicts (2).

Now, define a mapping \(F : Y \to 2^Y \) by

\[
F(y) = \{ z \in \mathcal{Z} : f(y,z) \in \mathcal{G} \}, y \in Y .
\]

Note that \(f(y,z) \) is generalized \(g \)-T-GFC-diagonally quasi-concave in \(y \). Hence, \(F \) is a \(T \)-KMM mapping by Lemma 2.1. Since \(T \tilde{\mathcal{I}} \mathcal{K} \mathcal{M}(X,Y,Z) \), then, \(\{c|_{\mathcal{Z}} F(y)\}_{\pi} \) \(\{c|_{\mathcal{Z}} Z : f(y,z) \in \mathcal{G} \} \) has the finite intersection property. Therefore, by (3), (4), in virtue of Theorem 3.2, there exists \(z^* \tilde{\mathcal{I}} K \) such that \(f(y,z^*) \notin \mathcal{G} \) for all \(y \in Y \).

Theorem 3.4 Let \((X,Y,F) \) be a GFC-space, \(Z \) a topological space, \(Y \) a nonempty subset of \(Z \), \(K \) a nonempty compact subset of \(Z \), \(T \tilde{\mathcal{I}} \) \(\mathcal{K} \mathcal{M}(X,Y,Z) \), \(s \tilde{\mathcal{I}} C(ZZ) \) a continuous map and \(p : Z \to \{ 1 \} \) \(\{ a \} \) a nonempty valued mapping such that

(1) \(P^i \) is weakly transfer compactly open valued relative to \(K \);

(2) there exists \(N \tilde{\mathcal{I}} \prec_\prec \wedge \) such that

\[
\bigcap_{\mathcal{I} \wedge} c|_{\mathcal{Z}} (s^{-1}(Y \setminus P^{-1}(y))) \subset K .
\]

(3) for each \(z \in \mathcal{Z} \), \(P(s(z)) \) is a \(T^i \)-subset of \(Y \).

Then there exists \(z^* \tilde{\mathcal{I}} Z \) such that \(z^* \tilde{\mathcal{I}} P(s(z^*)) \).

Proof Define a function \(f : Y \times \mathcal{Z} \to \mathcal{R} \) by

\[
f(y,z) = \begin{cases} 1, & \text{if } y \tilde{\mathcal{I}} P(s(z)), \\ 0, & \text{if } y \tilde{\mathcal{I}} P(s(z)).
\end{cases}
\]

for each \((y,z) \in Y \times \mathcal{Z} \).

Suppose the conclusion is false, which implies that for each \(z \in \mathcal{Z} \), \(f(z,z) \notin \mathcal{G} \). By (1) and the continuity of \(s \), \(s^{-1} P^{-1} \) is weakly transfer compactly open valued relative to \(K \). Note that

\[
s^{-1} P^{-1}(y) = \{ z \in \mathcal{Z} : f(y,z) = 0 \} .
\]

Then \(f(y,z) \) is w.0-t.c.l.s.c relative to \(K \) in \(z \) by Lemma 2.2. By (2), there exists \(N \tilde{\mathcal{I}} \prec_\prec \wedge \) such that

\[
\bigcap_{\mathcal{I} \wedge} c|_{\mathcal{Z}} Z : f(y,z) = 0 \} \subset K .
\]

By (3), for each \(z \in \mathcal{Z} \), \(\{ y \in Y : f(y,z) = 0 \} \) is a \(T^i \)-subset of \(Z \). In virtue of Theorem 3.3, there exists \(z^* \tilde{\mathcal{I}} K \) such that \(f(y,z^*) \notin \mathcal{G} \) for all \(y \in Y \), which implies that \(P(s(z^*)) = \), which contradicts that \(P \) is nonvalued.

Remark 3.3 Theorem 3.4 unifies, improves and generalizes Theorem 3.1 of Kirk et al.[9], Theorem 3.5 of Wen[10], Theorem 2.4 of Wen[11], Theorem 2, 3, 4, 8 of Park[14], and Theorem 2.3-A of Chowdhury et al.[15]. Lemma 2.2.
of Zhang\cite{16}, Lemma 1 of Wu\cite{17}, Corollary 2 and Corollary 3 of Chen and Shen\cite{18}.

As an immediate consequence of Theorem 3.4, we have the following existence theorem for maximal elements.

Theorem 3.5 Let \((X,Y,F)\) be a GFC-space, \(Z\) a topological space, \(Y\) a nonempty subset of \(Z\), \(K\) a nonempty compact subset of \(Z\), \(T \subseteq \KKM(X,Y,Z)\), \(s \subseteq C(Z, Z)\) a continuous map and \(P : Z \otimes 2^X\) a nonempty valued mapping such that

1. \(P^1\) is weakly transfer compactly open valued relative to \(K\);
2. there exists \(N \subseteq <Y>\) such that
 \[
 \bigcap_{\delta Y} \text{cl}_\delta(\varepsilon^1(Z \cap P^1(\delta)(Y)) \cap K;

3. for each \(z \in I\), \(P(s(z))\) is a \(T^1\)-subset of \(Y\);
4. for each \(z \in I\), \(z \in P(s(z))\).

Then, there exists \(z \in I\) \(Z\) such that \(P(z) = \).

IV. APPLICATION IN GAME THEORY

In this section, we shall establish the equilibrium existence theorems for abstract economies and qualitative games in GFC-spaces. Following Wen\cite{19}, let \(I\) be a set of agents (players). An abstract economy (generalized game) \(E := (X_i; A_i, B_i, P_i)_{i \in I}\), is defined as a family of ordered quadruples \((X_i; A_i, B_i, P_i)\), where for each \(i \in I\), \(X_i\) is a nonempty set (choice set or strategy set), \(A_i, B_i; X := P_{\beta_i}X_i 2^X\) are constraint mappings and \(P_i; X \otimes 2^X\) is a preference mapping. An equilibrium for \(E\) is a point \(z \in X\) such that for each \(i \in I, \tilde{x}_i = p_{\tilde{y}}(\tilde{x}_i) = \text{cl}_\delta B_{\tilde{y}}(\tilde{x}_i)\) and \((A \cap P)(\tilde{x}_i)\) is a finite index set, for each \(i \in I, X_i\) is a nonempty set (strategy set) and \(P_i; X := P_{\beta_i}X_i 2^X\) is a preference mapping. A point \(z \in X\) is said to be an equilibrium for the qualitative game \(G\) if for each \(i \in I, P(\tilde{x}_i) = \).

Theorem 4.1 Let \(X, Y\) be topological spaces, \((X,Y,F)\) be a GFC-space, \(K\) a nonempty compact subset of \(Y\), \(T \subseteq \KKM(X,Y,Z)\), \(A, B; Y \otimes 2^Y\) \(\subseteq \) two constraint mappings, \(P; Y \otimes 2^Y\) a preference mapping, \(E := (X; A, B, P)\) an abstract economy and \(F := (Y; A, B, P)\) an abstract economy such that

1. \(A^1, B^1\) and \(P^1\) are weakly transfer compactly open valued relative to \(K\);
2. \(F\) is compactly open;
3. there exists \(N \subseteq <Y>\) such that
 \[
 \bigcap_{\delta Y} \text{cl}_\delta(\varepsilon^1(Y \cap (A^1 \cap P^1(\delta)(Y)) \cap K;

4. for each \(y \in I\), \(A(y), B(y)\) and \(P(y)\) are \(T^1\)-subsets of \(Y\);
5. for each \(y \in I\), \(y (A \cap P)(y)\).

Then, \(E\) has an equilibrium in \(Y\).

Proof Define a mapping \(T : Y \otimes 2^Y\) by
\[
T(y) = \begin{cases} (\hat{A} \cap P)(y), & \text{if } y \in I Y \setminus F, \\ B(y), & \text{if } y \in I Y, \end{cases}
\]
for each \(y \in I Y\). Then \(T\) is nonempty valued and for each \(z \in I Y\),
\[
T^{-1}(z) = \{y \in I Y \mid (y T \cap (A \cap P)(z)) \cap (Y \cap (B \cap Y^{-1}(z))
\]
By (1) and (2), \(T^1\) is weakly transfer compactly open valued relative to \(K\). Note that for each \(z \in I Y\),
\[
Y \setminus T^{-1}(z) = (Y \setminus (A \cap P(z))) \cap (Y \setminus (B \cap Y^{-1}(z))
\]
By (3), there exists \(N \subseteq <Y>\) such that
\[
\bigcap_{\delta Y} \text{cl}_\delta(\varepsilon^1(Y \setminus T^{-1}(\delta)(Y)) \cap K
\]
By (4), for each \(y \in I Y\), \(T(y)\) is a \(T^1\)-subset of \(Y\). In virtue of Theorem 3.4, there exists \(y \in I Y\) such that \(y \in T(y)\). But by (5), \(y \in I (A \cap P)(y)\). Thus, \(y \in (A \cap P)(y)\) \(\subseteq \). Therefore, \(y \in (A \cap P)(y)\).

Theorem 4.2 Let \(I\) be a finite index set, for each \(i \in I\), \(X_i, Y_i\) be topological spaces, \(P_i; Y_i \otimes 2^Y\) be a preference mapping, \(K\) a nonempty compact subset of \(Y\), \(X := P_{\beta_i}X_i 2^X\), \((X,Y,F)\) be a GFC-space, \(T \subseteq \KKM(X,Y,Z)\). Suppose the qualitative game \(G := (X, P, \beta_i)_{i \in I}\), such that

1. for each \(i \in I\), \(P_i^{-1}\) is weakly transfer compactly open valued relative to \(K\);
2. there exists \(y^* \in I Y\) such that for each \(i \in I\),
 \[
 \text{cl}_\delta(Y \cap (P_i^{-1}(y^*)(y)) \subseteq K

3. for each \(i \in I\) and each \(y \in I Y\), \(P_i^{-1}(y)\) is empty or \(T^1\)-subset of \(Y\);
4. for each \(y \in I Y\), there exists \(i \in I\) such that \(y \in P_i^{-1}(y)\).
Then, \(G \) has an equilibrium in \(Y \).

Proof Let
\[
I(y) = \{ \text{g} \mid J(y) \}	ext{, } y \in Y,
\]
\[
J(y) = \{ \text{g} \mid J(I_p(y)) \}	ext{, } y \in Y
\]
and define a mapping \(P: Y \to 2^Y \) by
\[
P(y) = \bigcap_{i \in I} P^{-1}_i P_i(y), \text{ if } I(y) = \emptyset,
\]
\[
\{ \} , \text{ if } I(y) \neq \emptyset.
\]
for each \(y \in Y \). Then, \(P(y) \) is and only if \(I(y) \neq \emptyset \). For each \(y \in Y \), if \(I(y) = \emptyset \), then \(y \) is an equilibrium of \(G \) in \(Y \). If \(I(y) \neq \emptyset \), then \(P(y) = \bigcap_{i \in I} P^{-1}_i P_i(y) \) and for each \(z \in Y \),
\[
P^{-1}(z) = \{ y \mid J(y) = z \}
\]
\[
= \{ y \mid J(y) = \bigcap_{i \in I} P^{-1}_i P_i(y) \}
\]
\[
= \{ y \mid J(y) = P^{-1}_i P_i(y), i \}
\]
\[
= \{ y \mid J(y) = P^{-1}_i P_i(y), i \}
\]
\[
= \bigcap_{i \in I} P^{-1}_i P_i(y)
\]
By (1), \(P^{-1} \) is weakly transfer compactly open valued relative to \(K \). By (2), there exists \(N = \{ * \} \) such that
\[
\bigcap_{i \in J(z)} c_{l_i}(Y \setminus P^{-1}(y)) = c_{l_i}(Y \setminus P^{-1}(y))
\]
\[
= c_{l_i}(Y \setminus P^{-1}(y))
\]
\[
= \bigcup_{i \in J(z)} c_{l_i}(Y \setminus P^{-1}(y))
\]
\[
= \bigcap_{i \in I} P^{-1}_i P_i(y)
\]
By (3), for each \(y \in Y \), \(P(y) \) is a \(T^1 \)-subset of \(Y \). By (4), for each \(y \in Y \), \(P(y) \). Hence, in virtue of Theorem 3.5, there exists \(\hat{y} \in Y \) such that \(P(\hat{y}) = \emptyset \), which implies that \(I(\hat{y}) = \emptyset \), which in turn implies that \(P(\hat{y}) = \emptyset \) for all \(i \in I \). Therefore, \(\hat{y} \) is an equilibrium of the qualitative game \(G \) in \(Y \).

Theorem 4.3 Let \(I \) be a finite index set, for each \(i \in I \), \(X_i, Y_i \) be topological spaces, \(A_i, B_i : Y_i = P_{A_i} Y_i \to 2^{X_i} \) be constraint mappings, \(F_i : Y \to 2^{X_i} \) be a preference mapping, \(F = \{ \text{g} \mid J(p_i(y)) \} \subset X = P_{A_i} X_i, (X, Y, F) \) be a GFC-space, \(K \) a nonempty compact subset of \(Y \), \(T \) a KKM(\(X, Y, Z \)). Suppose the abstract economy \(E = (X; A_i, B_i, P_i)_{i \in I} \), such that

(1) for each \(i \in I \), \(A_i, P_i \) are weakly transfer compactly open valued relative to \(K \);

(2) for each \(i \in I \), \(F_i \) is compactly open;

(3) there exists \(y^* \in Y \) such that for each \(i \in I \), \(y \in A_i \setminus p_i(y^*) \), \(K \) and \(Y \setminus (F_i \setminus p_i(y^*)) \), \(K \);

(4) for each \(i \in I \) and each \(y \in Y \), \(p_i^{-1} p_i(y) \) and \(p_i^{-1} A_i(y) \) are empty or \(T^1 \)-subset of \(Y \);

(5) for each \(y \in Y \), there exists \(\hat{y} \in I \) such that \(y \in p_i^{-1} A_i(y) \);

(6) for each \(i \in I \) and each \(y \in Y \), \(A_i(y) \).

Then, \(E \) has an equilibrium in \(Y \).

Proof For each \(i \in I \), define a mapping \(Q_i : Y \to 2^Y \) by
\[
Q_i(y) = \bigcap_{i \in I} (A_i \setminus p_i(y)), \text{ if } y \in Y, \{ \}
\]
\[
\text{if } y \in \{ \}
\]
\[
\text{for each } y \in Y \). Then, for each \(y \in Y \),
\[
Q_i^{-1}(y) = \{ y \mid J(y) = Q_i(y) \}
\]
\[
= \{ y \mid J(y) = A_i \}
\]
\[
= \bigcup_{i \in I} (A_i \setminus p_i(y)) \}
\]
\[
= (F_i \setminus A_i(y)) \}
\]
\[
= A_i(y) \}
\]
By (1) and (2), for each \(i \in I \), \(Q_i^{-1} \) is weakly transfer compactly open valued relative to \(K \). By (3), there exists \(y^* \in Y \) such that for each \(i \in I \),
\[
Y \setminus Q_i^{-1}(y^*) \}
\]
\[
= (Y \setminus A_i(y^*)) \}
\]
\[
= \bigcap_{i \in I} (A_i \setminus p_i(y^*)) \}
\]
By (4), for each \(i \in I \) and each \(y \in Y \), \(p_i^{-1} Q_i(y) \) is empty or \(T^1 \)-subset of \(Y \). By (5), for each \(i \in I \), \(y \in Y \), there exists \(\hat{y} \in I \) such that \(y \in p_i^{-1} Q_i(y) \). Hence, in virtue of Theorem 4.2, there exists \(\hat{y} \in Y \) such that \(Q_i(y) \) for all \(i \in I \). In the other hand, by (6), for each \(i \in I \), \(A_i(\hat{y}) \), and then \(A_i(\hat{y}) = \emptyset \), which implies that
\[
\hat{y} \in Y \setminus F_i \}
\]
\[
= (Y \setminus A_i(y^*)) \}
\]
\[
= \bigcap_{i \in I} (A_i \setminus p_i(y^*)) \}
\]
\[
\text{and hence } \hat{y} = p_i(\hat{y}) \}
\]
\[
= \bigcap_{i \in I} (A_i \setminus p_i(y^*)) \}
\]
\[
\text{Therefore, } \hat{y} \in Y \}
\]
\[
\text{is an equilibrium of the abstract economy } E \in Y\}
\]

V. CONCLUSION

In this paper, a new definition of generalized -T-GFC-diagonally quasiconcave (resp., quasiconvex) function is first introduced, and the property of generalized -T-GFC-dia-gonally quasiconcave (resp., quasiconvex) functions is studied. And then, a new intersection theorem for weakly generalized -transfer compactly closed values mappings is established.
in non-compact topological spaces. As applications, new variational inequalities for weakly g-transfer compactly lower semi-continuous functions are studied in noncompact topological spaces and noncompact GFC-spaces, and a fixed point theorem and a maximal element theorem for weakly g-transfer compactly open inverted valued mappings are obtained in noncompact GFC-spaces. These in turn are applied to yield equilibrium existence theorems for abstract economies and qualitative games with weakly g-transfer compactly closed valued constraint mappings and preference mappings in noncompact GFC-spaces. Our results unify, improve and generalize corresponding results in the reference cited above.

ACKNOWLEDGMENT

This paper was supported by Guizhou province natural science foundation of China ([2011]2093); the natural scientific research foundation of Guizhou provincial education department.

REFERENCES

Kai Ting Wen (1962), male, native of Dafang, Guizhou, P R China, a professor of Bijie University, M.S.D., engages in nonlinear analysis.