Solving Multi-depot, Heterogeneous, Site Dependent and Asymmetric VRP Using Three Steps Heuristic

Ismail Yusuf *1,2,3

1Faculty of Computer Science and Information Technology, University of Malaya, Malaysia
2Lamintang Education and Training (LET) Centre, Batam, Indonesia
3Prodi Teknik Informatika, Sekolah Tinggi Teknik (STT) Ibnu Sina, Batam, Indonesia

* ariel_ismail@yahoo.com

Abstract—Vehicle Routing Problem (VRP) relates to the problem of providing optimum service with a fleet of vehicles to customers. It is a combinatorial optimization problem. The objective is usually to maximize the profit of the operation. However, for public transportation owned and operated by government, accessibility takes priority over profitability. Accessibility usually reduces profit, while increasing profit tends to reduce accessibility. In this research, it was explored how accessibility can be increased without penalizing the profitability. This requires the determination of routes with minimum fuel consumption, maximum number of ports of call and maximum load factor satisfying a number of pre-determined constraints: hard and soft constraints. To solve this problem, a heuristic algorithm was proposed. The results from this experiment show that the algorithm proposed had better performance compared to the partitioning set.

Keywords—VRP; Ship Routing; Heuristic; Multi-depot; Heterogeneous; Site Dependent; Asymmetric

I. INTRODUCTION

The vehicle routing problem (VRP) is a general combinatorial optimization problem that has become a key component of transportation management. The VRP was first introduced in [1]. The general VRP consists of determining several vehicle routes with minimum cost for serving a set of customers, whose geographical coordinates and demands are known in advance. Each customer is required to be visited only once by one vehicle. Typically, vehicles are homogeneous and have the same capacity restrictions.

General VRP is defined on a connected graph $G = (V, A)$ is a graph where V is a set of nodes (vertices) and A is the set of arcs (edges). $C = (c_{ij})$ is a cost matrix associated with A, and it is said to be symmetric when $c_{ij} = c_{ji}$ and asymmetric otherwise. The vehicle must start and finish its tour at the depot and the objective is to construct routes at minimum travel cost.

The abbreviation NP-hard refers to nondeterministic polynomial time hard. That means that it is not guaranteed that there is a known algorithm that solves all cases to optimality in a reasonable execution time. So in addition of an appropriate solution approach, a number of heuristics and meta-heuristics have been developed to find a solution to the problem.

To describe the TSP as a VRP, an instance of the VRP was taken with one depot, one vehicle with an unlimited capacity (or set all demands to zero), a cost function proportional to only the distance, and an arbitrary number of customers (cities). Similarly, to describe the BPP as a VRP, the variant of the VRP with one depot and a cost matrix of all zero’s was considered. Literature reviews of TSP and BPP can be referred to in [2-8].

II. PAGE LAYOUT

This section briefly discusses the ship routing problem, and methods to solve the problem have been proposed for VRP in earlier research.

A. Ship Routing Problem

The VRP may actually be considered a broad class of routing problems and it is an important research in the area of
transportation. The geographic location of a region will affect the efficiency of the transportation system. In archipelagic countries with long shorelines or many wide rivers, ship transportation plays a significant role in domestic trade. For the wider situation, ship transportation is the major conduit of international trade.

The VRP is composed of many specific variants, i.e. multi depot VRP, capacitated VRP, symmetric VRP etc. For many cases, a combination of two or more of these variants for solving a real world problem is needed. The varieties of VRP with similarities in the ship routing problem are as shown in Table 1.

A MDVRP is a general VRP with multiple depots. A company may have several depots by which it can serve its customers. If the customers are clustered around depots, it is possible to model this distribution problems a set of MDVRP. The objective of the MDVRP is to serve all customers while minimizing the number of vehicles and the sum of travel time. The feasible solution of MDVRP would be to make each route satisfy the VRP constraints while beginning from and returning to the same depot.

Lau et al. [9] proposed MDVRP as follows, as each depot stores and supplies various products, and has a number of identical vehicles with the same capacity to serve customers who demand different quantities of various products. Each vehicle starts the tour from its resided depot, delivers products to a number of customers, and returns to the same depot. The objective of the VRP in their paper is to minimize the total cost due to the total distance travelled of all vehicles and due to the total time required for all vehicles to serve customers, subject to a number of constraints.

Lau et al. [9] proposed to use a stochastic search technique while Salhi & Sari [10] and Nagy & Salhi [11] used a heuristic method to solve MDVRP. Salhi & Sari [10] presented a multi-level composite heuristic and introduced two reduction tests, i.e. within depot reduction test and between depot reduction tests to enhance the efficiency of the proposed heuristic. Nagy and Salhi [11] proposed an integrated heuristic method which includes four phases: (i) find a weakly feasible initial solution; (ii) improve the solution while maintaining weak feasibility; (iii) make the solution strongly feasible; (iv) improve the solution while maintaining strong feasibility.

Renaud et al. [12] and Cordeau et al. [13] proposed to solve MDVRP using tabu search. Renaud et al. [12] solved the problem by using a tabu search algorithm that comprised of three phases, i.e. fast improvement, intensification, and diversification. Each of these phases utilized some or all of the three basic procedures, 1-route, 2-route, and 3-route mechanisms. While Cordeau et al. [13] proposed a tabu search heuristic consisting of the GENI heuristic, which was used to insert unrouted customers or remove customers from their current routes and then reinsert them into different routes.

Skok et al. [14] and Jeon et al. [15] used a metaheuristic method to solve MDVRP. Skok et al. [14] used general GA with roulette wheel selection in which six crossover operations and three mutation operations were examined. Their researches found that the cycle crossover and fragment reordering crossover are superior to the others while scramble mutation outperform other mutation operations.

Jeon et al. [15] proposed a hybrid GA with features including: (i) produce the initial population by using both a heuristic and a random generation method; (ii) minimize infeasible solutions instead of elimination; (iii) gene exchange process after mutation; (iv) flexible mutation rate; and (v) route exchange process at the end of GA.

The CVRP is the most common and basic variant of the VRP. CVRP is a generic name given to a whole class of problems in which each vehicle has the same loading capacity, starts from only one depot and then routes through to customers. A set of routes for a fleet of vehicles based a depot must be determined for a number of geographically dispersed customers, and vehicles have the maximal loading capacity. All customers have known demands for a single commodity and each customer can only be visited by one vehicle, and each vehicle has to return to the depot. The service time unit can be transformed into the distance unit. The loading and travelling distance of each vehicle cannot exceed the loading capacity and the maximum travelling distance of the vehicle.

All vehicles in CVRP are homogeneous; having the same capacity while the size of the fleet is unlimited. There are many variants of the CVRP that relax one or both of these conditions. One variant of the CVRP is the heterogeneous fleet vehicle routing problem (HVRP). In HVRP, the fleet is composed of a fixed number of vehicles with differences in their equipment, capacity, age or cost and in which the number of available vehicles is fixed as a priori [16]. The problem is how to best utilize the existing fleet to serve customer demands. In the HVRP, the transportation cost of a vehicle is proportional to the distance travelled.

<table>
<thead>
<tr>
<th>Variety VRP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterogeneous fleet VRP (HVRP)</td>
<td>Ships operate with different sizes, types and capacity.</td>
</tr>
<tr>
<td>Site dependent capacitated VRP (SDCVRP)</td>
<td>Sea depth of each port may be different; the ship draft should not be equal to or greater than the sea depth.</td>
</tr>
<tr>
<td>Multi depot VRP (MDVRP)</td>
<td>Each ship serves exactly one route and the route must include at least one fuel port where the number of fuel ports is more than one.</td>
</tr>
<tr>
<td>Asymmetric VRP (AVRP)</td>
<td>Distance for sailing from port i to port j and port j to port i may be different.</td>
</tr>
</tbody>
</table>

TABLE 1 VARIETY VRP WITH SIMILARITIES IN SHIP ROUTING PROBLEM
VRP intensifies in the real-life context when the vehicle fleet is heterogeneous. The use of a heterogeneous fleet of vehicles has multiple advantages. In some cases it is possible to service customers requiring small vehicles because of accessibility restrictions. Notable examples are size and weight constraints that may even vary over time, as exemplified by a ship’s physical dimension constraints, including ship draft restrictions that vary with tide, available berth space in ports and sea depth of ports. In the heterogeneous fleet, vehicles of different carrying capacities give the flexibility to allocate capacity according to the customer’s varying demands in a more cost effective way, by deploying the appropriate vehicle types to areas with the analogous concentration of customers. HVRP can be solved by mathematical methods, heuristic and meta-heuristic. Tarantilis et al. [17] solved HVRP by implementing a threshold accepting procedure where a worse solution is only accepted if it is within a given threshold, and they provided an improved version in [18]. Yaman [19] put forward six formulations which are enhanced by valid inequalities and lifting, Choi & Tcha [20] presented a linear programming relaxation which is solved by the column generation technique, Choi & Tcha [20] used a column generation technique which is enhanced by dynamic programming schemes, and Pessoa et al. [21] proposed a Branch-Cut-and-Price algorithm over an extended formulation that is capable for solving HVRP.

Gendreau et al. [22] and Taillard [16] used a heuristics to solve HVRP. Taillard [16] proposed an algorithm based on tabu search, adaptive memory and column generation, a heuristic column generation method in which a tabu search requiring node coordinates was used to generate a large set of routes and a solution was obtained by solving a set partitioning problem whose columns correspond to these routes. Prins [23] developed an algorithm based on heuristics; the algorithm follows a local search procedure based on the steepest descent local search and tabu search, while Dondo & Cerda [24] developed a three-phase heuristic. Penna et al. [25] proposed an iterated local search based on a heuristic method. Subramanian et al. [26] proposed a hybrid algorithm that is composed of an iterated local search based on a heuristic method and a set partitioning formulation. The set partitioning model was solved by means of a mixed integer programming solution that interactively calls on the iterated local search heuristic during its execution.

A metaheuristic method was used to solve HVRP by Ochi et al. [27] and Li et al. [28]. Ochi et al. [27] presented an evolutionary hybrid meta-heuristic which combines a parallel Genetic Algorithm with scatter search, while Li et al. [28] published a record-to-record travel metaheuristic. Prins [29] used a memetic algorithm to solve HVRP.

SDCVRP is a variant of the HVRP where there exists a dependency between the type of vehicle and the customer, meaning that not every type of vehicle can serve every type of customer because of site-dependent restrictions [30, 31, 32, 33].

AVRP is a variant of the VRP where travel distance from i to j may be different with that from j to i. AVRP is related to the asymmetric travelling salesman problem (ATSP). ATSP is a generalized travelling salesman problem in which distance between a pair of cities need not be equal in the opposite direction. The ATSP is an NP-hard problem, thus many meta-heuristic algorithms have been proposed to solve this problem, such as a hybrid genetic algorithm [34] and a tabu search [35].

The aim of the general VRP is to minimize total travel time or travel distance that contributes to the cost. In particular, fuel cost for different types and sizes of fleet is also studied to minimize the fuel consumption [36, 37].

B. Heuristic Algorithm for Solving VRP

Many methods to solve the VRP have been proposed. Some research efforts were oriented towards the development and analysis of approximate heuristic techniques capable of solving real VRP problems. Bowerman et al. [38] classified the heuristic approaches to the VRP into five classes:

1. Cluster first and route second;
2. Route first and cluster second;
3. Savings and insertion;
4. Improvement and exchange;
5. Simpler mathematical programming representations through relaxing some constraints.

Novoa et al. [39] developed a heuristic algorithm based on the maximum insertion concept to solve VRP while Pertiwi [40] used a set covering heuristic to solve ship routing problem. The solution consists of two steps, the first step is generating ship routes and the second step is choosing the best ship routes.

Pertiwi [39] adopted a nearest neighbour method for generating ship routes. The nearest neighbour method compares the distribution of distances that occur from a point to its nearest neighbour. Nearest neighbour starts with a randomly chosen port and adds the nearest but not yet visited port to the last port in the tour until all the ports are visited.

III. PROBLEM DESCRIPTION

This research focuses on a heterogeneous fleet of passenger ships. The ship starts the tour from the depot and visits all the ports assigned before returning to the depot.
A. Fuel Consumptions

In this research, a model was proposed for calculating total fuel consumption of route combinations for the heterogeneous fleet where the fuel consumption of each vehicle depends on the type of the vehicle. Generally, fuel consumption of a ship is related to the type of engine used. The fuel consumption of a ship is given by Eq. (1) [41].

\[f^k_{ij} = \eta \cdot P^k \cdot \Phi^k \cdot t^k_{ij} \cdot \mu \]
(1)

\[t^k_{ij} = \frac{l^k_{ij}}{v^k} \]
(2)

where

- \(f^k \) = Fuel consumption of ship \(k \)
- \(t^k_{ij} \) = Voyage time for ship \(k \) sailing from port \(i \) to port \(j \)
- \(l^k_{ij} \) = Distance travelled for ship \(k \) sailing from port \(i \) to port \(j \); \(l_{ij} \) may be different from \(l_{ji} \)
- \(v^k \) = Speed of ship \(k \)
- \(\eta \) = Constant (0.16)
- \(P^k \) = Engine power of ship \(k \) (HP)
- \(\Phi^k \) = Number of engine
- \(\mu \) = Efficiency (0.8)

The following is an example. Suppose a depot \(v_0 \) serves three customers: 1, 2, 3 with two mix fleet \(k_1 \) and \(k_2 \). The total distance of the route: (0,1) (1,2) (2,3) (3,0) is 270 miles. The speed of \(k_1 \) is 19 knots and that of \(k_2 \) is 17 knots where the number of engines used is 1, respectively, whilst the power of \(k_1 \) is 8,700 HP and \(k_2 \) is 2,176 HP. Based on Eqs. 1 and 2, the fuel consumption of \(k_1 \) is 15,825.18 litres and \(k_2 \) is 4,424 litres. It shows that although the ships serve the same route, travel costs are not the same because their fuel consumptions are not equal.

B. Constraints

The vehicle fleet tends to be mixed as the vehicle types are slightly different. This implies that the ships are of different capacity, speed, and cost. Basically, there are two types of constraints: soft and hard constraints.

1) Soft Constraints

There are two soft constraints in the ship routing problem:

- Ship draft and sea depth

 If the ship-draft is equal to or more than the sea depth then it is anchored a few miles from the port. This incurs additional cost to carry passengers and cargo from ship to port and from port to ship. Thus, the ship draft should not be equal or greater than the sea depth.

- Load factor

 Ships with a large capacity should serve ports with more passengers to reduce costs due to the load factor. The load factor between two ports is calculated by Eq. (3).

\[b^k_{ij} = \frac{\gamma^k_{ij}}{q^k} \]
(3)

where

- \(b^k_{ij} \) = Load factor for ship \(k \) sailing from port \(i \) to port \(j \)
- \(\gamma^k_{ij} \) = Number of passengers in ship \(k \) sailing from port \(i \) to port \(j \)
- \(q^k \) = Capacity of ship \(k \)

Soft constraint is dealt with by imposing a penalty if a route exceeds the limit. The penalties imposed are:
i. Ship draft and sea depth: 500 litres when ship draft is equal to or more than the sea depth;
ii. Load factor: imposed penalty 5000 litres for load more than 100%, imposed penalty 1000 litres for load factor less than 50% and imposed penalty 500 litres for load factor between 50% to 75%.

2) Hard Constraints

Hard constraints are dealt with by removing unfeasible routes. Hard constraints in the ship routing problem include:

- Travel time

The maximum duration of each tour is called commission days, T^k_i. Hence a ship must return to the depot within T^k_i. If T^k_r is the ship’s travel time, then $T^k_r \leq T^k_i$. T^k_r is calculated by Eqs. (4)-(5).

$$T^k_{ij} = \left(\frac{t^k_{ij}}{v^k} + t^k_i \right) + \left(\frac{t^k_{ji}}{v^k} + t^k_j \right)$$

(4)

$$T^k_r = T^k_{ij} + (T^k_{ij-1})$$

(5)

where

- T^k_i = Total voyage time by ship k
- T^k_{ij} = Travel time by ship k sailing from port i to port j and stays in port i added travel time for sailing from port j to port i and stays in port j.
- t^k_{ij} = Distance travelled by ship k sailing from port i to port j; l_{ij} may be different from l_{ji}
- t^k_i = Port time of ship k that stays in port i

- Travel distance

Each ship has a different fuel tank size, hence the maximum distance, L^k_i that is travelled is different. This distance must be equal to or greater than the total distance of the route r, L^k_r, i.e. $L^k_r \leq L^k_i$.

L^k_i is calculated by Eq. (6) while L^k_r is calculated by Eq. (7) - (8).

$$L^k_i = \frac{\theta^k * v^k}{\eta * P^k * \Phi^k * \mu} - (v^k * 24)$$

(6)

$$L^k_{ij} = l^k_{ij} + l^k_{ji}$$

(7)

$$L^k_r = L^k_{ij} + (L^k_{ij-1})$$

(8)

where

- l^k_{ij} = Distance travelled by ship k sailing from port i to port j; l_{ij} may be different from l_{ji}
- L^k_r = Total distance travelled for route r served by ship k
- L^k_i = Maximum allowed routing distance for ship k
- θ^k = Maximum capacity of the ship’s tank
- v^k = Speed of ship k
- η = Constant (0.16)
- P^k = Engine power of ship k (HP)
- Φ^k = Number of engines used in ship k
- μ = Efficiency (0.8)

- Fuel port
A route must include at least one fuel port.

IV. MATHEMATICAL MODEL

Let, \(G = (P, A) \) be a graph, where \(P = \{1, 2, \ldots, M+N\} \) is the index set of ports (nodes) and \(A = \{(i, j) \mid i, j; i < j\} \) is the set of arcs (links), every arc \((i, j)\) is associated with a distance matrix \(L = l_{ij} \), which represents the asymmetric travel distance from port \(i \) to port \(j \), i.e., \(l_{ij} \) is not necessarily equals to \(l_{ji} \).

The mathematical formulation of the model is presented below:

A. Notations

\(C \) is the index set of customer ports, \(C = \{1, 2, \ldots, M\} \)

\(D \) is the index set of fuel ports, \(D = \{1, 2, \ldots, N\} \)

\(K \) is the index set of ships, \(K = \{1, 2, \ldots, S\} \)

B. Parameters

\(h_i \) = Sea depth of port \(i \)

\(v^k \) = Speed of ship \(k \)

\(\delta^k \) = Ship draft of ship \(k \)

\(f_{ij}^k \) = Fuel consumption for ship \(k \) sailing from port \(i \) to port \(j \)

\(T^k \) = Maximum allowed routing time (commission days) for ship \(k \)

\(l_{ij}^k \) = Distance travelled by ship \(k \) sailing from port \(i \) to port \(j \); \(l_{ij} \) not necessary equals to \(l_{ji} \)

\(b_{ij}^k \) = Load factor for ship \(k \) sailing from port \(i \) to port \(j \)

\(q^k \) = Seat capacity of ship \(k \)

\(s_{ij}^k \) = Number of passengers in ship \(k \), travelling from port \(i \) to port \(j \)

\(\gamma \) = Number of ports of call of ship \(k \) when serving route \(r \)

C. Decisions Variables

\(x^k_{r,ij} = \begin{cases} 1 & \text{if ship } k \text{ sailing from port } i \text{ to port } j \text{ at route } r \\ 0 & \text{otherwise} \end{cases} \)

\(\alpha \) denotes the penalties when ship draft of ship \(k \) is equal to or more than the sea depth of port \(i \)

\(\alpha = \begin{cases} 2000 & \delta^k \geq h_i \\ 0 & \text{otherwise} \end{cases} \)

\(\beta \) denotes the penalties of the load factor of ship \(k \) when sailing from port \(i \) to port \(j \)

\(\beta = \begin{cases} 5000 & b_{ij}^k > 100 \\ 2000 & 50 \leq b_{ij}^k < 50 \\ 1000 & 0 \leq b_{ij}^k < 65 \\ 0 & \text{otherwise} \end{cases} \)

\(\gamma \) denotes the penalties of the number of ports of call when ship \(k \) serve route \(r \)

\(\gamma = \begin{cases} 2000 & \gamma^k < 15 \\ 1000 & 15 \leq \gamma^k \leq 20 \\ 0 & \text{otherwise} \end{cases} \)

Problems arise to construct a route with minimum fuel consumption in a feasible set of routes for each vehicle. The feasible route for ship \(k \) is to serve ports without exceeding the constraints:

1. Total travel time \(T^k \) for any vehicle is no longer than \(T_k \)
2. Total travel distance \(L^k \) for any vehicle is no longer than \(L_k \)
3. The feasible route must include at least one fuel port

The mathematical formulation is given in Eq. (9):
\[
= \text{min} \left(\sum_{i \in K} \sum_{i \in P} f_{ij}^k \cdot x_{r,ij}^k + \sum_{k \in K} \sum_{i \in P} \alpha \cdot x_{r,ij}^k + \sum_{k \in K} \sum_{i \in P} \beta \cdot x_{r,ij}^k + \gamma \sum_{k \in K} Y_r^k \right)
\]

The objective is to minimize the sum of the fuel consumption on the routes travelled, the penalty cost for violations of the ship draft and sea depth, the penalty cost for violations of the load factor and the penalty cost for violations of the number of ports of call.

Subject to:

1. All ports (customer and fuel ports) \(i\) are serviced by ship \(k\) at least once

\[
\sum_{k \in K} \sum_{i \in P} x_{r,ij}^k \geq 1, \quad \forall i \in P, \quad \forall k \in K
\]

2. Travel time of ship \(k\) is not longer than the maximum allowed routing time \(T^k\)

\[
\sum_{k \in K} T_r^k \leq T^k
\]

3. Total distance travelled for route \(r\) served by ship \(k\) is not longer than the maximum allowed routing distance of ship \(k\)

\[
\sum_{k \in K} L_r^k \leq L^k
\]

4. Ship draft of ship \(k\) must be less than the sea depth of port \(i\)

\[
\sum_{k \in K} \sum_{i \in P} \delta_k < h_i
\]

5. Route \(r\) served by ship \(k\) should possess a fuel-port

\[
\sum_{k \in K} \sum_{i,j \in P} D \cdot x_{r,ij}^k \geq 1
\]
START

Initialization:

\(C = \{1, 2, \ldots, m\} \) is set of customer ports
\(D = \{(m+1), (m+2), \ldots, (m+n)\} \) is a set of fuel ports
\(P = \{1, 2, \ldots, m, (m+1), (m+2), \ldots, (m+n)\} \) is a set of all ports; \(n(P) \) = number of the ports
\(k = 1, k \in K \)

\(k < n(K)\)

Yes

\(i = i + 1 \)

No

\(k = k + 1 \)

STOP

Set of routes with \(T^i \leq T \) in the same ship

\(i < n(P)\)

Yes

Put \(i \) into temporary set of route

Search port \(j, j \in P \) Where \(j \) is the next nearest port to \(i \)

Put \(i \) into temporary set of route

\(i = x, j = y \)

No

\(T^i \leq T^f \)

Yes

Search port \(p, p \in P \) where \(p \) is the next nearest port to \(x \) or \(y \)

\(p < n(P)\)

Yes

\(i \) is the next nearest port to \(p \)

No

Count \(p, x \)

Yes

Count \(y, p \)

No

Remove \(p \) from temporary set of route

Put port \(p \) into temporary set of route

\(T^i \leq T^f \)

Yes

No

\(T^i \leq T^f \)

Yes

Fig. 1 Clustering
V. SOLUTION PROCEDURE

This research proposes using a heuristic algorithm to find the optimal route and vehicle assignment. The goal is to minimize conflicts between accessibility and profitability. Accessibility is affected by maximum number of ports of call while profitability is affected by minimum fuel consumption and maximum load factor. The feasible route combination should meet the requirements:

- Each route is served by one ship;
- Each port is served at least once;
- Each route has at least one fuel port;
- Each ship has total travel time within 14 days;
- Each ship does not exceed the allowed travel distance.

A route is considered optimal when: there is low fuel consumption, the number of ports of call is high and the load factor is about 65%-100%.

Fig. 2 Assigning vehicle
This research uses heuristic method which adopted ‘cluster first and route second’ for solving four VRP variants. It involves three phases for the method, i.e. clustering, assigning of vehicle and finding the best routes by combining feasible solution.

The three phases for the algorithm are:

(i) Phase I: Clustering

Routes are clustered to solve the problem based on the constraint: travel time and travel distance allowed for each route. Travel time is less or equal to the maximum travel time allowed and the travel distance is less or equal to the maximum travel distance allowed. The output is a feasible route set for the solution candidate. The complete process of this phase is shown in Fig. 1.

(ii) Phase II: Assigning vehicle

Vehicles are assigned in a cluster to ensure each route has at least one fuel port and route is removed if this condition is violated. In this phase, fuel consumption is calculated with a penalty \(\alpha\) imposed if the ship’s draft is equal to or greater than the sea depth, penalty \(\beta\) is imposed for the load factor conditions while penalty \(\gamma\) is imposed for the number of ports of call conditions. The complete process of this phase is shown in Fig. 2.

(iii) Phase III: Finding best routes

A robust algorithm was developed based on the maximum-insertion concept where the heuristic model with the maximum-insertion concept is modified and the idea is to successively insert a route into the best combination of routes with minimum fuel consumption.

The output is a set of optimum routes with minimum fuel consumption and the selected routes must satisfy the following conditions:

- All ports are served at least once;
- All ships are used;
- Each route must be serviced only by one ship;
- Total fuel consumption is the lowest possible.

VI. EXPERIMENTS

All computational experiments were carried out using an Intel(R) Core(TM) i5 CPU M430 @2.27GHz.

A. Benchmark Problem

The experiment described herein examined the performance of the proposed algorithms compared to the partitioning sets heuristic in 11 benchmarks. Benchmarks were generated based on Yusuf [41]. All the benchmarks can be seen in Table 2.

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Number of</th>
<th>Represent of</th>
<th>Customer Ports</th>
<th>Fuel Ports</th>
<th>Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>40c-9d-8k</td>
<td>40</td>
<td>Routes served by ships where capacity is 1000 - 1500 seats</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>28c-9d-9k</td>
<td>28</td>
<td>Routes where the number of ports of call is 10 - 15</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>45c-11d-11k</td>
<td>45</td>
<td>Routes where the number of ports of call is 16 - 20</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>32c-4d-8k</td>
<td>32</td>
<td>Routes where the number of ports of call is 20 and above</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>34c-11d-11k</td>
<td>34</td>
<td>Routes where the number of ports of call is 16 and less</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>63c-14d-11k</td>
<td>63</td>
<td>Routes where the number of ports of call is 17 and above</td>
<td>14</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>18c-6d-8k</td>
<td>18</td>
<td>Routes where the number of ports of call is 13 ports</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>28c-6d-11k</td>
<td>28</td>
<td>Routes with the highest number of fuel ports (8 ports)</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12c-4d-8k</td>
<td>12</td>
<td>Routes where the number of fuel ports is more than the number of customer ports</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>53c-12d-11k</td>
<td>53</td>
<td>Routes where the number of fuel port is 6 or less</td>
<td>12</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>24c-5d-10k</td>
<td>24</td>
<td>Routes where the number of fuel port is 7</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 shows the performance of the best known solution using partitioning sets in 11 benchmarks.
TABLE 3 BEST KNOWN SOLUTION USING PARTITIONING SETS IN 11 BENCHMARKS

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Number of</th>
<th>Best known solution (Partitioning sets)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Customer</td>
<td>Fuel Ports</td>
<td>Vehicles</td>
<td>Fuel Consumption</td>
</tr>
<tr>
<td>40c-9d-8k</td>
<td>40</td>
<td>9</td>
<td>8</td>
<td>1,275,883</td>
</tr>
<tr>
<td>28c-9d-9k</td>
<td>28</td>
<td>9</td>
<td>9</td>
<td>2,375,323</td>
</tr>
<tr>
<td>45c-11d-11k</td>
<td>45</td>
<td>11</td>
<td>11</td>
<td>3,868,567</td>
</tr>
<tr>
<td>32c-4d-8k</td>
<td>32</td>
<td>4</td>
<td>8</td>
<td>1,036,758</td>
</tr>
<tr>
<td>34c-11d-11k</td>
<td>34</td>
<td>11</td>
<td>11</td>
<td>2,743,105</td>
</tr>
<tr>
<td>63c-14d-11k</td>
<td>63</td>
<td>14</td>
<td>11</td>
<td>4,755,085</td>
</tr>
<tr>
<td>18c-6d-8k</td>
<td>18</td>
<td>6</td>
<td>8</td>
<td>1,491,149</td>
</tr>
<tr>
<td>28c-6d-11k</td>
<td>28</td>
<td>6</td>
<td>11</td>
<td>2,134,324</td>
</tr>
<tr>
<td>12c-4d-8k</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>1,263,833</td>
</tr>
<tr>
<td>53c-12d-11k</td>
<td>53</td>
<td>12</td>
<td>11</td>
<td>2,945,322</td>
</tr>
<tr>
<td>24c-5d-10k</td>
<td>24</td>
<td>5</td>
<td>10</td>
<td>1,267,387</td>
</tr>
</tbody>
</table>

B. Result

Table 4 shows the performance of the routes generated by the proposed algorithm. The proposed algorithm consists of three steps, i.e. clustering, assigning vehicle and choosing route with minimum fuel consumption. The computational result is given in Table 4.

TABLE 4 SOLUTION OF 11 BENCHMARKS SOLVED BY PROPOSED ALGORITHM

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Number of</th>
<th>Proposed Algorithm</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Customer</td>
<td>Fuel Ports</td>
<td>Vehicles</td>
<td>Fuel Consumption</td>
</tr>
<tr>
<td>40c-9d-8k</td>
<td>40</td>
<td>9</td>
<td>8</td>
<td>1,067,352</td>
</tr>
<tr>
<td>28c-9d-9k</td>
<td>28</td>
<td>9</td>
<td>9</td>
<td>1,900,067</td>
</tr>
<tr>
<td>45c-11d-11k</td>
<td>45</td>
<td>11</td>
<td>11</td>
<td>3,029,397</td>
</tr>
<tr>
<td>32c-4d-8k</td>
<td>32</td>
<td>4</td>
<td>8</td>
<td>888,475</td>
</tr>
<tr>
<td>34c-11d-11k</td>
<td>34</td>
<td>11</td>
<td>11</td>
<td>2,177,213</td>
</tr>
<tr>
<td>63c-14d-11k</td>
<td>63</td>
<td>14</td>
<td>11</td>
<td>3,699,584</td>
</tr>
<tr>
<td>18c-6d-8k</td>
<td>18</td>
<td>6</td>
<td>8</td>
<td>1,231,551</td>
</tr>
<tr>
<td>28c-6d-11k</td>
<td>28</td>
<td>6</td>
<td>11</td>
<td>1,716,760</td>
</tr>
<tr>
<td>12c-4d-8k</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>1,060,131</td>
</tr>
<tr>
<td>53c-12d-11k</td>
<td>53</td>
<td>12</td>
<td>11</td>
<td>2,328,848</td>
</tr>
<tr>
<td>24c-5d-10k</td>
<td>24</td>
<td>5</td>
<td>10</td>
<td>1,061,950</td>
</tr>
</tbody>
</table>

C. Analysis

Summaries of the fuel consumption of each algorithm can be seen in Table 5. The minimum fuel consumption used to serve all ports in 11 benchmarks is by the routes generated by the proposed algorithm. Increased fuel consumption efficiency of the hybrid genetic algorithm compared to the PELNI method was (PELNI, 2010) calculated by Eq. (15).

\[
\text{Efficiency} = \left(\frac{100}{\left| \frac{20,161,328 - 25,007,233}{25,007,233} \right|} \right) \times 100
\]

Efficiency = 19.37%

Based on Eq. 15, increased fuel consumption efficiency of the routes generated by the proposed algorithms compared to the routes generated by partitioning sets is 19.37%. Based on fuel consumption, the performance of the proposed algorithm is better than that of the partitioning sets.

Summaries of the number of ports of call of each algorithm can be seen in Table 6. The percentage of the solution obtained by the proposed algorithm compared to partitioning sets algorithm was calculated using Eq. (16).

\[
\text{Efficiency} = \left(\frac{100}{\left| \frac{506 - 1516}{1516} \right|} \right) \times 100
\]

Efficiency = 66.62%
TABLE 5 FUEL CONSUMPTION OF 11 BENCHMARKS

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Fuel Consumption</th>
<th>Partitioning Sets</th>
<th>Proposed Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>40c-9d-8k</td>
<td>1,275,883</td>
<td>1,067,352</td>
<td></td>
</tr>
<tr>
<td>28c-9d-9k</td>
<td>2,375,323</td>
<td>1,900,067</td>
<td></td>
</tr>
<tr>
<td>45c-11d-11k</td>
<td>3,868,567</td>
<td>3,029,397</td>
<td></td>
</tr>
<tr>
<td>32c-4d-8k</td>
<td>1,036,758</td>
<td>888,475</td>
<td></td>
</tr>
<tr>
<td>34c-11d-11k</td>
<td>2,743,105</td>
<td>2,177,213</td>
<td></td>
</tr>
<tr>
<td>63c-14d-11k</td>
<td>4,755,085</td>
<td>3,699,584</td>
<td></td>
</tr>
<tr>
<td>18c-6d-8k</td>
<td>1,491,149</td>
<td>1,231,551</td>
<td></td>
</tr>
<tr>
<td>28c-6d-11k</td>
<td>2,134,324</td>
<td>1,716,760</td>
<td></td>
</tr>
<tr>
<td>12c-4d-8k</td>
<td>1,114,330</td>
<td>1,060,131</td>
<td></td>
</tr>
<tr>
<td>53c-12d-11k</td>
<td>2,945,322</td>
<td>2,328,848</td>
<td></td>
</tr>
<tr>
<td>24c-5d-10k</td>
<td>1,267,387</td>
<td>1,061,950</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>25,007,233</td>
<td>20,161,328</td>
<td></td>
</tr>
</tbody>
</table>

Based on Eq.(16), the decreased number of ports of call of the proposed algorithm compared to the partitioning sets algorithm is 66.62%. Based on the number of ports of call, the performance of the routes generated by partitioning sets is better than that of the routes generated by the proposed algorithm.

TABLE 6 NUMBER PORTS OF CALL FOR 11 BENCHMARKS

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Number of Ports of Call</th>
<th>Partitioning Sets</th>
<th>Proposed Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>40c-9d-8k</td>
<td>154</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>28c-9d-9k</td>
<td>119</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45c-11d-11k</td>
<td>203</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>32c-4d-8k</td>
<td>95</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>34c-11d-11k</td>
<td>142</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>63c-14d-11k</td>
<td>282</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>18c-6d-8k</td>
<td>81</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>28c-6d-11k</td>
<td>104</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>12c-4d-8k</td>
<td>55</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>53c-12d-11k</td>
<td>194</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>24c-5d-10k</td>
<td>87</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,516</td>
<td>506</td>
<td></td>
</tr>
</tbody>
</table>

The averages of the load factor results are tabulated in Table 7. From Table 7 it can be seen that the average of the load factors of routes generated by partitioning sets is about 4.48% while the average of the load factor of the routes generated by proposed algorithm is about 23.52%. Based on the load factor, the performance of the proposed algorithm shows better than that of the partitioning sets.

TABLE 7 LOAD FACTOR OF 11 BENCHMARKS

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Load factor</th>
<th>Partitioning Sets</th>
<th>Proposed Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>40c-9d-8k</td>
<td>3.60</td>
<td>17.13</td>
<td></td>
</tr>
<tr>
<td>28c-9d-9k</td>
<td>5.41</td>
<td>26.01</td>
<td></td>
</tr>
<tr>
<td>45c-11d-11k</td>
<td>5.35</td>
<td>23.16</td>
<td></td>
</tr>
<tr>
<td>32c-4d-8k</td>
<td>5.57</td>
<td>24.02</td>
<td></td>
</tr>
<tr>
<td>34c-11d-11k</td>
<td>5.30</td>
<td>26.47</td>
<td></td>
</tr>
<tr>
<td>63c-14d-11k</td>
<td>3.75</td>
<td>9.81</td>
<td></td>
</tr>
<tr>
<td>18c-6d-8k</td>
<td>4.22</td>
<td>21.03</td>
<td></td>
</tr>
<tr>
<td>28c-6d-11k</td>
<td>4.14</td>
<td>25.11</td>
<td></td>
</tr>
<tr>
<td>12c-4d-8k</td>
<td>4.42</td>
<td>42.45</td>
<td></td>
</tr>
<tr>
<td>53c-12d-11k</td>
<td>3.54</td>
<td>18.79</td>
<td></td>
</tr>
<tr>
<td>24c-5d-10k</td>
<td>3.95</td>
<td>24.74</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>4.48</td>
<td>23.52</td>
<td></td>
</tr>
</tbody>
</table>

As aforementioned in the first chapter, the objective of this research was to minimize conflicts between accessibility and profitability. Accessibility is associated with the number of the ports of call while profitability is associated with the load factor. The goal of increasing profit contradicts the goal of greater accessibility. Since the objective was to minimize conflicts of interest between accessibility and profitability, a measurement tool called ‘quadrant scale’ was proposed. The quadrant scale consists of load factor for x axis and number of ports of call for y axis. There are 4 areas in the quadrant scale:
• I is the area for high accessibility but low profitability
• II is the area for high accessibility and high profitability
• III is the area for low accessibility but high profitability
• IV is the area for low accessibility and low profitability

Based on data presented in Tables 5, 6 and 7, the quadrant scale of each algorithm is shown in Fig. 4. As seen in Fig. 4, routes generated by partitioning sets is spread in quadrant I and IV, and 7 out of 11 benchmarks are in quadrant IV. This means that the number of ports of call and the load factor are low. The routes generated by partitioning sets showed the worst performance.

Fig. 4 Quadrant scale of each algorithm in 11 benchmarks

Fig.4 shows that the routes generated by the proposed algorithm are spread between quadrant III and IV. Generally, it can be concluded that the best performances in the 11 benchmarks are from the routes generated by the proposed algorithm.

VII. CONCLUSIONS

VRP is composed of many specific variants i.e. multi depot VRP, capacitated VRP, symmetric VRP, etc. Similarly, the variety VRPs in the ship routing problem in this case study were MDVRP, HVRP, SDVRP and AVRP, then it was called rich VRP. To solve this problem, an algorithm was proposed with three phases for the method, i.e. clustering, assigning of vehicle and finding the best routes by combining feasible solution.

To evaluate the algorithm, an experiment was carried out. The experiment was to investigate the performance of the proposed algorithm over 11 benchmarks. The results from this experiment showed that the proposed algorithm had better performance compared to the partitioning sets algorithm. All results can be summarized as:

• The increased fuel consumption efficiency of the routes generated by the proposed algorithm compared to the routes generated by partitioning sets was 19.37%. In terms of fuel consumption, the performance of the proposed algorithm was better than that of the partitioning sets.
• The decreased number of ports of call of the proposed algorithm compared to the partitioning sets algorithm was 66.62%. In terms of the number of ports of call; the routes generated by partitioning sets showed better performance than those generated by the proposed algorithm.

• The average of the load factors of routes generated by partitioning sets was about 4.48% while the average of the load factors of the routes generated by the proposed algorithm was about 23.52%. In terms of the load factor, the performance of the proposed algorithm was better than that of the partitioning sets.

ACKNOWLEDGMENT

1. This work was supported in part by the University of Malaya under Grant RG078-ICT 2011.
Search for ISBN: 978-3-639-71082-3

REFERENCES

[18] C. Prins, “Eficient heuristics for the heterogeneous fleet multirip VRP with application to a large-scale real case,” Journal of

Ismail Yusuf earned a diploma at polytechnic Hasanuddin (UNHAS Indonesia), a BSc. at UJ Jakarta (Indonesia), a MSc (IT) at Department of Artificial Intelligence in Technical University of Malaysia Malacca (UTeM Malaysia), and a PhD at Department of Artificial Intelligence in University of Malaya (UM Malaysia).

His main research interests include the application of artificial intelligence in the domains of genetic algorithm, fuzzy logic, expert system and applied for operation research, transportation, controller and multi-objective optimization.