Non-Thermal Plasma Applied to Acetone-Polluted Water: a Possibility to Decontaminate and to Obtain High Energetic Gases

Marquidia Pacheco¹, Joel Pacheco², Ricardo Valdivia³, Alfredo Santana⁴

¹Instituto Nacional de Investigaciones Nucleares, Carretera México Toluca. Estado de México
²Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Toluca, Eduardo Monroy Cardenas 2000, Estado de México
³marquidia.pacheco@inin.gob.mx

Abstract-The present work depicts results acquired from a chemical model and validated by a set of experiments on the treatment of acetone-polluted water by a non-thermal plasma technique. Results reveal the formation of hydrogen and carbon monoxide, a combination of gases better known as syngas, which were then clarified with a chemical kinetic model. From this model, the influence of hydroxyl radicals is highlighted by extraordinary reactivity during the acetone treatment and its conversion to syngas (CO+H₂). This study proposes a low energy density non-thermal plasma technique to depollute wastewater containing different levels of acetone.

Keywords- Acetone Polluted Water; Non-thermal Plasma; Energetic Gases Production

I. INTRODUCTION

Derived from various processes such as the manufacture of basic chemicals, plastics, motor vehicle parts, fuel, meat products, and electronic equipment, wastewater is characterized by contamination with volatile organic compounds (VOCs). These compounds are listed in several countries as priority pollutants due to their harmful effects on ecosystems and human health [1, 2]. Due to the significant mobility of VOCs they can be ubiquitous; their presence has been detected in air and sediment of the Antarctic, in vegetation near Mount Everest, in marine water and in the surface sediments of lakes [3-5].

Removal of organic pollutants from water can be done with traditional treatment processes such as carbon adsorption and biological degradation; acetone, for example, is relatively easy to biodegrade [6, 7]. However, polluted groundwater also contains organic compounds that are difficult to biodegrade; furthermore, the acetone concentrations can be very low, at which point the biomass remains unstable and its treatment becomes problematic [8, 9]. Based on these observations, several studies have been undertaken regarding organic pollutant removal, such as the application of pervaporation in VOC removal from water [10]; in this technique, pervaporation membranes separate water and vapour respectively from the feed and permeated side [11]. Extraction of acetone has been realized [12], and phenol extraction is achievable when the pervaporation process is operated in conjunction with a decanter module [13].

Another type of technology used to treat VOC-polluted water is the use of an advanced oxidation processes (AOP); this technique maximizes the oxidizing potential of the hydroxyl radical (•OH), known to be more reactive than ozone (O₃) and hydrogen peroxide (H₂O₂) [14, 15]. There exist several treatments based on AOP, some of which employ chemical oxidizers such as O₃ and H₂O₂ assisted by UV lamps to generate •OH radicals [16] or a classic old reactive system, the Fenton process, in which •OH radicals are formed by adding H₂O₂ to Fe²⁺ salts [17, 18].

Non-thermal plasma techniques could be considered an AOP, due to the formation of oxidizing species •OH, O• and H•, molecules (H₂O₂, O₂) and UV light, combining them in a unique process from those described above [19]. For this reason, non-thermal plasma has been successfully applied to treat wastewater polluted with phenols [20, 21], with textile dyes [22-24], with the pesticide endosulfan [25], with toxic heavy metal ions such as Ni(II) [26]. Non-thermal plasma techniques have also been applied to the treatment of more complex molecules, such as estradiol or other chemicals derived from the pharmaceutical industry [27].

A previous study thoroughly examined the application of plasma technology to wastewater remediation [27]; from this review, it was concluded that plasma processes are attractive when applied during pre-treatment to convert persistent compounds into biodegradable intermediates, which can then be treated by a biological oxidation process at a lower cost. Several experimental plasma devices have also been described in terms of their removal and energy efficiencies, highlighting the advantages of DC arc plasma to treat phenols [28].

In the present work we will present preliminary results concerning the acetone treatment and the subsequent formation of syngas by a gliding arc discharge that could be roughly considered as non-thermal plasma.
II. BASIC PRINCIPLES AND CHEMICAL KINETIC MODEL

A gliding discharge arc can be produced by two divergent electrodes with a gas flowing between them. Where the electrodes are closest, the arc moves toward the diverging section until a critical length value is attained; at this point the discharge restarts. The formation of radicals occurs in the diverging section; the plasma is considered to be non-thermal or lacking in thermodynamic equilibrium.

A non-thermal plasma is a gas ionized by electrical discharges; it is characterized by electrons with high kinetic energy or high electronic temperatures that collide with background molecules (H₂O, N₂, O₂) to produce radicals, ions, photons and secondary electrons.

The model used in this study takes into account the radical formation from the collision of energetic electrons with molecules of water and air; the newly formed radicals then interact to convert acetone into H₂ and CO.

In plasmas, a large number of equations occur; here we detail 29 equations with respect to their importance on acetone removal and syngas production. The rate coefficients for radical formation and reactions with acetone are shown in Table 1 [28-44].

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate coefficient (cm³ mol⁻¹ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e⁻ + O₂ → O• + O• + e⁻</td>
<td>2 x 10⁻¹²</td>
</tr>
<tr>
<td>e⁻ + O₂ → O• + O(D) + e⁻</td>
<td>1 x 10⁸</td>
</tr>
<tr>
<td>e⁻ + N₂ → N• + N• + e⁻</td>
<td>6.5 x 10⁹</td>
</tr>
<tr>
<td>e⁻ + O₂ → O₂</td>
<td>2.8 x 10¹³</td>
</tr>
<tr>
<td>e⁻ + O₂ → O• + e⁻</td>
<td>6.5 x 10¹³</td>
</tr>
<tr>
<td>e⁻ + O₂ → O₂ + 2e⁻</td>
<td>8 x 10¹⁰</td>
</tr>
<tr>
<td>e⁻ + N₂ → e⁻ + N₂(A)</td>
<td>4.5 x 10¹⁰</td>
</tr>
<tr>
<td>e⁻ + CO₂ → CO + O⁻</td>
<td>2.5 x 10¹²</td>
</tr>
<tr>
<td>e⁻ + H₂O → •OH + H⁻ + e⁻</td>
<td>3.3 x 10¹⁰</td>
</tr>
<tr>
<td>e⁻ + H₂O → H⁻ + OH⁻</td>
<td>9 x 10¹²</td>
</tr>
<tr>
<td>O(D) + H₂O → •OH + •OH</td>
<td>2.2 x 10¹⁰</td>
</tr>
<tr>
<td>O(D) + N₂ → O• + N₂</td>
<td>2.6 x 10¹ⁱ</td>
</tr>
<tr>
<td>O(D) + O₂ → O• + O₂</td>
<td>6.3 x 10¹²</td>
</tr>
<tr>
<td>O(D) + H₂O → O• + H₂O</td>
<td>1.2 x 10¹¹</td>
</tr>
<tr>
<td>O(D) + O₂ → O• + O₂(g¹Δg)</td>
<td>3.4 x 10¹¹</td>
</tr>
<tr>
<td>N₂(A) + O₂ → N₂ + O• + O•</td>
<td>2.5 x 10¹²</td>
</tr>
<tr>
<td>N₂(A) + N₂ → 2N₂</td>
<td>3 x 10¹⁶</td>
</tr>
<tr>
<td>(CH₃)₂CO + •OH → CH₃COOH₂• + •OH</td>
<td>7.93 x 10¹⁶</td>
</tr>
<tr>
<td>(CH₃)₂CO + •OH → CH₃COOH + •CH₃</td>
<td>2.71 x 10¹⁷</td>
</tr>
<tr>
<td>CH₃COH₂• + O₂ → CH₃COOH + •O •CH₃</td>
<td>1.45 x 10¹²</td>
</tr>
<tr>
<td>CH₃COH₂• + O₂ → CH₃COOH2• + •OH</td>
<td>1.28 x 10¹²</td>
</tr>
<tr>
<td>CH₃COH₂• + O₂ → CH₃COOH₂• + •OH</td>
<td>9.80 x 10¹³</td>
</tr>
<tr>
<td>•CH₃ + •O → CH₃O•</td>
<td>1.54 x 10¹⁰</td>
</tr>
<tr>
<td>•CH₃ + •O → CH₃O•</td>
<td>0.40 x 10⁹</td>
</tr>
<tr>
<td>CH₃O• + •O → CH₃ + O₂</td>
<td>2.51 x 10¹ⁱ</td>
</tr>
<tr>
<td>CH₃O• + •O → CH₃O + •OH</td>
<td>1.0 x 10¹⁰</td>
</tr>
<tr>
<td>CH₃O• + •OH → CH₃O + H₂O</td>
<td>3.01 x 10¹⁰</td>
</tr>
</tbody>
</table>

From the equations reported in Table 1, a chemical mechanism is proposed [46] and schematized in Fig. 1. Fig. 1 visualizes the importance of oxygen and water vapour in the formation of key radicals •OH and O•, responsible for syngas formation and acetone removal.
A temporal distribution of chemical species could be accomplished with a mass balance applied to the equations listed in Table 1; the obtained system of ordinary differential equations can be solved with Matlab software. Figs. 2 and 3 report the evolution of species as a function of time. As seen in Fig. 2, radicals, ions and excited species are formed at approximately 10^{-8} seconds. The concentration of excited oxygen, O(1D), rapidly diminishes; this is explained by its interaction with H_2, N_2 and H_2O, subsequently forming O•, •OH and N radicals as schematized in Fig. 1. These radicals have the higher concentrations in the plasma.

Fig. 3 demonstrates the influence of plasma in 200ppm of acetone dissolved in water (the nitrogen and oxygen are provided by ambient air). In this specific case, radical concentrations are low and the formation of H_2 and CO is insignificant.
The acetone removal could be enhanced by augmenting the O• and •OH concentrations. For example, by augmenting O• concentration to 100ppm, almost a total acetone removal can be achieved. In this case, the influence of •OH is not as significant as that of the O• radical, as observed in Fig. 4. To augment O• radicals, a supplementary injection of air to the process could be realized.

![Fig. 4 Influence of O• and •OH radicals on acetone removal](image)

III. EXPERIMENTAL SETUP AND EXPERIMENTAL FINDINGS

A non-thermal plasma reactor was used to treat acetone dissolved in water; it consists of three tungsten diverging electrodes. As demonstrated in Fig. 5, the plasma forms at the closest point between the three electrodes; the plasma arc moves towards the diverging section, pushed by the gas flow and by electromagnetic force created by the arc current. The discharge length grows until a critical length value is attained, determined by the power supply limit. This configuration is called a gliding arc discharge; it combines thermal plasma (thermodynamic equilibrium) with non-thermal plasma (out of thermodynamic equilibrium). In non-thermal plasma, the kinetic energy of electrons is superior to that of heavy compounds (e.g. ions, molecules, radicals, etc.) whereas in thermal plasma, all compounds have the same kinetic energy and/or temperature. In the non-thermal plasma region, radicals are constantly formed and acetone is decomposed into energetic species as explained in the previous sections.

The reactor used consists of a quartz cylinder with three 90W electrodes. The circuit supply is comprised of three half bridge inverters with a resonant circuit load constituted by step-up transformers 1:20 for TR1, TR2 and TR3, in series with capacitors C1=C2=C3=110nF. High voltages can be obtained (5kVpp) in the plasma discharge.

The acetone-water is added by direct injection with an argon-air flow. The process of injection is continuous at a feed rate of 5 ml per second. A mass spectrometer is used to identify formulated compounds before and after acetone treatment. An optical emission spectroscopy (OES) study was also conducted in order to observe the atomic and molecular compounds formed in plasma. The experimental setup is depicted in Fig. 6.
Plasma containing acetone, as depicted by Fig. 7(a), has a larger volume and a better distribution along the electrodes than argon plasma, shown in Fig. 7(b). This is possibly due to an increase of electrons in the presence of acetone, augmenting the electrical conductivity of the plasma.

OES was applied to identify molecules as C₂ or atomic compounds (argon or hydrogen) in plasma. As can be seen in Figure 8(b), when acetone is introduced in the argon plasma, C₂ bands appear between 450 and 550nm [47]. The C₂ could be a precursor to carbonaceous products formed in a plasma process, such as carbon nanotubes [48]; however, in this case, only amorphous carbon was observed. From this study, the formation of H₂ is also corroborated with the presence of an H line situated at a wavelength of 656.3nm [49].

Mass spectra of argon-air plasma (without acetone-water) and argon-air acetone-water, are respectively reported in Figs.
9(a) and 9(b). According to the NIST library [50] some characteristic lines of acetone are reported at 43, 58 and 15 uma; no acetone lines can be observed in Fig. 9(b).

The removal efficiency cannot be strictly calculated from these results; however, 90% acetone removal is concluded with respect to equipment precision and potential experimental error. Under this consideration, the energy efficiency of the plasma reactor attains 6×10^{-4} mol/J as compared to a DC water plasma torch, for which energy efficiencies are approximately 1.7×10^{-7} mol/J [51].

A slight increase in H_2 synthesis is also observed, the intensity relation of H_2/N_2 increasing during the treatment of acetone compared to that observed in argon-air plasma (see Fig. 9b). CO production cannot be confirmed, because its characteristic lines could be overlapped with these of N_2 on mass spectra.

![Mass spectra of (a) air-argon plasma and (b) acetone-water-air-argon plasma](image)

Fig. 9 Mass spectra of (a) air-argon plasma and (b) acetone-water-air-argon plasma

IV. CONCLUSIONS

The role of $O\cdot$ radical on acetone treatment was highlighted in the analysed chemical mechanism; experimentally, this is accounted for by air injection to the plasma reactor. Preliminary results indicate that gliding arc could be considered a promising technique for the continuous treatment of acetone-polluted substances at a considerably low energetic value. In order to further quantify the removal efficiency, subsequent experiments should realize the characterization of products should with gas chromatography.

ACKNOWLEDGMENT

This project was supported by the ININ and CONACyT funds. Thanks to the COMECyT and SUTIN for the economic support. Many thanks to Nidia Vasquez, Mariano Garduño, Gustavo Soria, Jesús Silva, Mario Ibañez and Juan Salazar for technical support.

REFERENCES

30. H. Moreno, Toxic gases treatment, NOx and SOx, by dielectric discharge barrier and Corona discharge. Degradación de gases tóxicos, NOx y SOx, mediante descarga de barrera dieéctrica–Corona”, PhD These, Instituto Tecnológico de Toluca, 2008.

[50] NIST Mass Spectrometry Data Center Collection 2014 copy-right by the U.S. Secretary of Commerce on behalf of the United States of America.

Marquidia Pacheco was born in Mexico City, Mexico, on December 12, 1974. She received the B.S. degree in chemical engineering from the Institute of Technology of Toluca, Toluca, Mexico, in 1996, and the M.S. and Ph.D. degrees in physics and engineering of plasmas, focusing on the degradation of heavy oils with thermal plasma, and the synthesis of carbon nanotubes by electric arc, from Paul Sabatier University, Toulouse, France, in 1998 and 2003, respectively. She is a member of the National System of Researchers in Mexico, and she has been with the National Institute of Nuclear Research, Estado de México, Mexico, since 2003, where she works in the application of new technologies for pollution control and new materials synthesis at the Thermal Plasma Laboratory.

Joel Pacheco was born in Chihuahua Mexico, on July 9th, 1952. He received the B.Sc. degree in industrial electronics and the M.Sc. degree in power electronics from Chihuahua Institute of Technology, Chihuahua, Mexico, in 1974 and 1983, respectively, and the DEA and Ph.D. degrees in electronics from National Polytechnic Institute of Toulouse, Toulouse, France, in 1993. Since 1974, he has been with the Mexican National Institute of Nuclear Research (ININ), Estado de México, Mexico, where he has worked development of projects related with thermal and non-thermal plasmas, electrical discharges and pollution control. He has been a member of the National System of Researchers in Mexico since 1989. He was with the Toluca Institute of Technology, Toluca, Mexico, in 1987, where he is currently a Professor of power electronics. Since 1995, he has been responsible of the Thermal Plasma Laboratory, ININ.

Ricardo Valdivia was born in Mexico City, Mexico, on May 21, 1979. He received the B.S. degree in electronic engineering from the Institute of Technology of Toluca, Toluca, Mexico, in 2003, and Ph.D. degrees in electronics engineering, from Toluca Institute of Technology, Toluca, Mexico, in 2008. He has been involved with the development of power-supply system and associated electronic devices for plasma sources in the Plasma Applications Laboratory, National Institute of Nuclear Research, Estado de México, Mexico. His current scientific interests include plasma processing of materials, electronic instrumentation, plasma modeling and simulation, control systems, and plasma diagnostics.

Alfredo Santana was born in Toluca México, on January 13, 1971. He received the B.S. and the M.Sc. degree in Electronic Engineering from the Monterrey Institute of Technology and Higher Education, Campus Toluca. He realized his PhD degree in automating from Paul Sabatier University, Toulouse, France in 2002. Dr. Santana is currently Professor of electronics, mechatronics in the Monterrey Institute of Technology and Higher Education.